skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Albright, Catherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kolawole, Olatunji Matthew (Ed.)
    As the COVID-19 pandemic progresses, widespread community transmission of SARS-CoV-2 has ushered in a volatile era of viral immune evasion rather than the much-heralded stability of “endemicity” or “herd immunity.” At this point, an array of viral strains has rendered essentially all monoclonal antibody therapeutics obsolete and strongly undermined the impact of vaccinal immunity on SARS-CoV-2 transmission. In this work, we demonstrate that antibody escape resulting in evasion of pre-existing immunity is highly evolutionarily favored and likely to cause waves of short-term transmission. In the long-term, invading strains that induce weak cross-immunity against pre-existing strains may co-circulate with those pre-existing strains. This would result in the formation of serotypes that increase disease burden, complicate SARS-CoV-2 control, and raise the potential for increases in viral virulence. Less durable immunity does not drive positive selection as a trait, but such strains may transmit at high levels if they establish. Overall, our results draw attention to the importance of inter-strain cross-immunity as a driver of transmission trends and the importance of early immune evasion data to predict the trajectory of the pandemic. 
    more » « less